

Time: 3 Hrs.
MM: 50
Note: Students are advised to be careful while attempting the question paper and do not leave any question unanswered. Marks for each question are mentioned in front of the question.

Section A

Q 1 Show that the function $f(z)=\operatorname{Sin}(z) \operatorname{Cosh}(y)+i \operatorname{Cos}(x) \operatorname{Sinh}(y)$ is continuous as well as analytic everywhere.
Q 2 Find the analytic function whose real part is $x^{3}-3 x y^{2}$.
Q 3 Find all Taylor and Laurent series of $f(\boldsymbol{z})=\frac{-2 z+3}{z^{2}-3 z+2}$ with center at 0 .
Q 4 Use Residue integration method to show that: $\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\frac{\pi}{2 \sqrt{2}}$

Section B

Q 5 Define: (i) Ordinary Point (ii) Singular Point and (iii) Regular Singular point of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y$ $=0$. Obtain the series solution of the equation $y^{\prime \prime}+x 2 y^{\prime}+2 x y=0$, about $x=0$.
Q 6 In a Maxwellian distribution the fraction of particles of mass m with speed between v and $v+d v$ is

$$
\begin{equation*}
\frac{d N}{N}=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \exp \left(-\frac{m v^{2}}{2 k T}\right) v^{2} d v \tag{6}
\end{equation*}
$$

Where N is the total number of particles, k is Boltzmann's constant, and T is the absolute temperature. The average or expectation value of v^{n} is defined as. Show that

$$
\begin{equation*}
\left(v^{\prime \prime}\right\rangle=\left(\frac{2 k 7}{m}\right)^{m / 2} \frac{\Gamma\left(\frac{n+3}{2}\right)}{\Gamma\left(\frac{3}{2}\right)} . \tag{6}
\end{equation*}
$$

Here the distribution was in kinetic energy $\mathrm{E}=\mathrm{mv}^{2} / 2$, with $\mathrm{dE}=\mathrm{mvdv}$.
Section C
Q 7 Use the basic recurrence relation, to prove the following formulas:

$$
\begin{equation*}
I_{n}(x)=J_{n+1}^{\prime}+\frac{n+1}{x} J_{n+1}(x) \quad I_{1 / 2}(x)=\left(\frac{2}{\pi x}\right)^{1 / 2} \operatorname{Section} \mathrm{D}(x) \tag{6}
\end{equation*}
$$

Q 8 Use Laplace transform method to solve the initial value problem for a damped mass-spring system acted upon by a sinusoidal force for some time interval: $y^{\prime \prime}+2 y^{\prime}+2 y=r(t), \quad r(t)=10 \sin 2 t$ if $0<t<$ π and 0 if $t>\pi ; \quad y(0)=1$, $y^{\prime}(0)=-5$.
Q 9 Develop the irreducible 2×2 matrix representation of the group of rotations (including those that turn it over) that transform a square into itself. Give the group multiplication table.
Q 10 Do the three matrices
$E=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad A=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right] \quad B=\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$
Form a group (under matrix multiplication)? Add a minimum number of matrices to this set to make it a group. Find these necessary additional matrices and write down the multiplication table and classes. Is this group isomorphic to $\left(E, C_{4}, C_{4}{ }^{2}, C_{4}{ }^{3}\right)$ or to $\left(E, C_{4}{ }^{2}, m_{x}, m_{y}\right)$ or to both?

