National Institute of Technology Hannirpur 1 信 $\otimes \mathrm{V}$

Department of Mathematics \& Scientific Computing
MA-203: Engineering Mathematics III, End Term Examination, May 2023
Time: 3:00 hrs Roll No.:...........
Max. Mark:
Instructions: All questions are compulsory. Each question carries 5 marks.

1. Perform three iterations of the Gauss-Jacobi iteration method to solve the following system of equations:

$$
\begin{aligned}
& 6 x+y+2 z=6 \\
& x+4 y+3 z=-4 \\
& 2 x+y+8 z=8
\end{aligned}
$$

taking the initial approximation as $x=0, y=0, z=0$. Consider four decimals in the
computation.
2. Obtain the approximate value of $\frac{1}{\sqrt{7}}$ accurate to three decimal places, using Newton-Raphson method. Use 0.5 as the initial approximation.
3. Given

θ (in degree):	5	10	15	20	25
$\tan \theta:$	0.0875	0.1763	0.2679	0.3640	0.4663

Using Stirling formula, estimate the value of $\tan 16^{\circ}$. Use four decimal place representation in the computation.
4. The pressure and volume of a gas are related by the equation $p v^{\gamma}=k, \gamma$ and k being the constants. Using least square method, fit this equation to the following set of observations:

$p:$	0.5	1.0	1.5	2.0	2.5	3.0
$v:$	1.62	1.00	0.75	0.62	0.52	0.46

5. Evaluate the double integral

$$
\int_{1}^{5} \int_{1}^{5} \frac{d x d y}{\sqrt{x^{2}+y^{2}}}
$$

using the trapezoidal rule with two subintervals on each axis. Use four decimal place representation in the computation.
6. Using Runge-Kutta method of fourth order, solve for y at $x=1.2$ from the following initial value problem

$$
\frac{d y}{d x}=\frac{2 x y+e^{x}}{x^{2}+x e^{x}}, y(1)=0
$$

Take $h=0.2$ and use four decimal place representation in the computation.
7. Given

$$
\frac{d y}{d x}=x^{2}(1+y)
$$

and $y(1)=1, y(1.1)=1.233, y(1.2)=1.548$ and $y(1.3)=1.979$. Evaluate $y(1.4)$ by using Adams predictor-corrector method of fourth order. Use three decimal place representation in the computation.
8. (a) Identify the region $|z-2 i|<|z+2 i|$.
(b) Find the real and imaginary parts of $\log ((1+i) \log i)$, where \log represents principal logarithm.
9. Show that the function $f(z)=\sqrt{|x y|}$ is not differentiable at origin even though the CauchyRiemann equations are satisfied at origin.
10. Find the following integral using residue theorem

$$
\oint_{C:|z|=1} \frac{\cot z}{(z-1)^{2}(2 z-1)}
$$

