

National Institute of Technology Hamirpur, Hamirpur (H.P.)

End Semester Examination [B.Tech. 8th Semester]
EC-444
Information theory \& Coding
Time Duration: 3 Hrs
Max. Marks 50
Roll No :

Note:

All symbols used have their usual meanings.
Assume necessary data, if any.
Q1-Q6 are of 7 Marks each and Q7 is of 8 marks.

1. In a binary communication system (Figure 1), a 0 or 1 is transmitted. Because of channel noise, a 0 can be received as 1 and vice versa. Let m_{0} and m_{1} denote the events of transmitting 0 and 1 , respectively. Let r_{0} and r_{1} denote the events of receiving 0 and 1 , respectively. Let $P\left(m_{0}\right)=0.5, P\left(r_{1} \mid m_{0}\right)=p=0.1$, and $P\left(r_{0} \mid m_{1}\right)=q=0.2$. Find $P\left(r_{0}\right)$ and $P\left(r_{1}\right)$. If a ' 1 ' was received, what is the probability that a ' 1 ' was sent? Calculate the probability of error P_{e}.

Figure 1
2. The generator polynomial of a $(9,6)$ cyclic code is defined by

$$
g(X)=1+X^{3}
$$

Develop encoder and decoder diagrams for this code, using a systematic form for the code. Verify the working of the circuits using a suitable example by assuming a message and received vector.
3. Consider parity matrix P for $(6,3)$ Linear Block code as

$$
P=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Construct encoder and decoder for this Linear Block code. Comment and justify the code rate, error correction and detection capability of this $(6,3)$ Linear Block Code.

4. A convolutional coder has shift registers for the constraint length $K=3$, two modulo-2 adders, and a multiplexer. The generator sequences of the encoder are as follows

$$
\begin{aligned}
& g^{(1)}=\{1,1,0\} \\
& g^{(2)}=\{1,0,1\}
\end{aligned}
$$

Draw the block diagram of the encoder. Explain its working \& draw the trellis diagram for the same. Discuss Viterbi decoding algorithm for receiving 1000000100.. for an all zero transmitted code sequence.
5. The source of information X generates the symbols $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \& x_{7}\right\}$ with the corresponding probabilities $p\left(x_{1}\right)=0.37, p\left(x_{2}\right)=0.01, p\left(x_{3}\right)=0.33, p\left(x_{4}\right)=0.02, p\left(x_{5}\right)=$ $\left.0.16, p\left(x_{6}\right)=0.07, p\left(x_{7}\right)=0.04\right\}$. Dcsign the binary Huffman's encoding scheme. Calculate the coding efficiency.
6. The Z-channel has binary input and output alphabets and transition probabilities $p(y \mid x)$ given by

$$
P(Y \mid X)=\left(\begin{array}{cc}
1 & 0 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

with $x, y \in\{0,1\}$ Find the capacity of the Z-channel and the maximizing input probability distribution.
7. Define and explain the following terms:
(a) Maximum likelihood decorling
(b) Syndrome polynomial
(c) Information inequality
(d) Kraft's inequality

