6

National Institute of Technology, Hamirpur (HP)

Name of Examination: END-SEMESTER Examination Branch: B.Tech. & Dual Degree ECE 3rd Year Course Name: VLSI Design Techniques Time: 3 Hours

Session: 1 May 2023 Semester: 6th Course Code: EC-323 Maximum Marks: 50

Note: All questions are compulsory and carry equal marks. Assume any missing data.

		· · · · · · · · · · · · · · · · · · ·	
		Draw voltage transfer characteristics (VTC) of Childs and intervention inverters. Which region of the VTC is used for digital and analog circuit designs and why?	5+5
	(b)	A CMOS inverter has $V_{IL}=1.2V$, $V_{IH}=1.6V$, $V_{DD}=3.3V$. When input is 1.2V, output is 3.1V. The threshold voltages for NMOS and PMOS are $V_{tn}=0.5V$, $V_{tp}=-0.6V$, respectively. Determine the logic threshold voltage of the inverter.	
2	(a)	If frequency of operation is IMH2, C_L =1pr, it 10µr f v, 10 is T_{ab} = $T=0.1T$, $V_{DD}=5V$, switching activity $\alpha_t=1$ and $V_t=0.2V$, determine the power components and the total power dissipation in a CMOS inverter.	5+5
	(b)	Workout the drain-gate capacitance of the MOSFET in saturation and linear regions if C_{ox} = 5.5x10 ⁻³ F/cm ² , for W=3 λ , L=2 λ , L _D = $\lambda/4$, if technology=1 μ m.	
3	(a)	Identify the main problems encountered in precharge-evaluate logic and suggest suitable remedies for these problems. <u>OR</u> Give schematic circuit of a 3-input dynamic NAND gate. If the parasitic capacitances double from bottom, what is the percentage extent of charge sharing?	5+5
	(b)	For a CMOS inverter, $V_{DD} = 5V$, Channel length=1µm and $C_L = 2pF$. $V_{tn}=0.8V$, $V_{tp}=-1V$, $K_n'=50\mu A/V^2$ and $K_p'=20\mu A/V^2$. Design the inverter by determining the channel widths of the two transistors for an inverter threshold voltage of 2.2V and propagation delay $T_{pHL}=5ns$.	
4	(a)	What are the meanings and significance of the parameters g_0 and g_m in analog VLSI design? Determine their relationships using Shichman Hodges or MOS level-1 models, for linear and saturation regions of MOS transistor operation.	
	(b)	Determine the gain of a single stage common source MOS amplifier.	
5	(a)	Design a 4x4 NAND or NOR based ROM memory, giving proper schematic diagram.	2. S. S. A. U
	(b)	Design an equivalent CMOS inverter circuit for function Y, if all PMOS and NMOS are of the same dimensions. Identify the possible Euler's path solutions for Y and draw the stick diagram for any one of the possible solutions. Given the function, $Y = Bar \{(A+BC)DE\}$.	2