National Institute of Technology,
 Name of Examination: END-SEMESTER Examination
 Branch: B.Tech. \& Dual Degree ECE $3^{\text {rd }}$ Year
 Course Name: VLSI Design Techniques Time: 3 Hours
 Session: 1 May 2023 Semester: $6^{\text {th }}$ Course Code: EC-323 Maximum Marks: 50

Note: All questions are compulsory and carry equal marks. Assume any missing data.

| 1 | (a) | Draw voltage transfer characteristics (VTC) of CMOS and NMOS |
| :--- | :--- | :--- | inverters. Which region of the VTC is used for digital and analog circuit designs and why?

(b) A CMOS inverter has $\mathrm{V}_{\mathrm{IL}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}$. When input is 1.2 V , output is 3.1 V . The threshold voltages for NMOS and PMOS are $\mathrm{V}_{\mathrm{tn}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{tp}}=-0.6 \mathrm{~V}$, respectively. Determine the logic threshold voltage of the inverter.
2 (a) If frequency of operation is $1 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}, K=10 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{I}_{0}=\mathrm{I}_{\text {sub }}=\operatorname{lnA}$, $T=0.1 \mathrm{~T}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$, switching activity $\alpha_{\mathrm{t}}=1$ and $\mathrm{V}_{\mathrm{t}}=0.2 \mathrm{~V}$, determine the power components and the total power dissipation in a CMOS inverter.
(b) Workout the drain-gate capacitance of the MOSFET in saturation and linear regions if $\mathrm{C}_{\mathrm{ox}}=5.5 \times 10^{-3} \mathrm{~F} / \mathrm{cm}^{2}$, for $\mathrm{W}=3 \lambda, \mathrm{~L}=2 \lambda, \mathrm{~L}_{\mathrm{D}}=\lambda / 4$, if technology $=1 \mu \mathrm{~m}$.

3	(a)	Iden sug OR
$\frac{\text { Gin }}{}$		

Give schematic circuit of a 3-input dynamic NAND gate. If the parasitic capacitances double from bottom, what is the percentage extent of charge sharing?
(b) For a CMOS inverter, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, Channel length $=1 \mu \mathrm{~m}$ and $\mathrm{C}_{\mathrm{L}}=2 \mathrm{pF}$. $\mathrm{V}_{\mathrm{tn}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{tp}}=-1 \mathrm{~V}, \mathrm{~K}_{\mathrm{n}}{ }^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $\mathrm{K}_{\mathrm{p}}{ }^{\prime}=20 \mu \mathrm{~A} / \mathrm{V}^{2}$. Design the inverter by determining the channel widths of the two transistors for an inverter threshold voltage of 2.2 V and propagation delay $\tau_{p H L}=5 \mathrm{~ns}$.
4 (a) What are the meanings and significance of the parameters g_{0} and g_{m} in analog VLSI design? Determine their relationships using Shichman Hodges or MOS level-1 models, for linear and saturation regions of MOS transistor operation.
(b) Determine the gain of a single stage common source MOS amplifier.

5 (a) Design a 4×4 NAND or NOR based ROM memory, giving proper
. schematic diagram.
(b) Design an equivalent CMOS inverter circuit for function Y, if all PMOS and NMOS are of the same dimensions. Identify the possible Euler's path solutions for Y and draw the stick diagram for any one of the possible solutions. Given the function, $\mathrm{Y}=\operatorname{Bar}\{(\mathrm{A}+\mathrm{BC}) \mathrm{DE}\}$.

