[Q1] If $\mathbf{G}(\mathrm{r})=10 \mathrm{e}^{-2 z}\left(\rho \boldsymbol{a}_{\rho}+\boldsymbol{a}_{z}\right)$, determine the flux of \mathbf{G} out of the entire surface of the cylinder ρ $=1,0 \leq z \geq 1$. Confirm the result by using divergence theorem.
[Q2] Transform vector $\mathbf{A}=\mathrm{y} \boldsymbol{a}_{x}+(\mathrm{x}+\mathrm{z}) \boldsymbol{a}_{y}$ to cylindrical coordinate system.
[Q3] A charge distribution with spherical symmetry has density $\rho_{\mathrm{v}}=\left\{\begin{array}{ccc}\rho_{0} r / R & \text { if } \quad 0 \leq r \leq R \\ 0 & \text { if } & r \geq R\end{array}\right.$ Determine E everywhere.
[Q4] Semi infinite conducting plates at $\phi=0$ and $\phi=\pi / 6$ are separated by an infinitesimal insulating gap at z-axis. If $\mathrm{V}(\phi=0)=0$ and $\mathrm{V}(\phi=\pi / 6)=100 \mathrm{~V}$, calculate V and \mathbf{E} in the region between the plates.
[Q5] Find \mathbf{H} at the center C of an equilateral triangular loop of side 4 m carrying 5 A of current as in Figure

[Q6] A current distribution gives rise to the vector magnetic potential $\mathbf{A}=x^{2} y a_{x}+y^{2} x a_{y}-4 x y z a_{z}$ Wb / m. Calculate magnetic field \mathbf{B} at $(-1,2,5)$ and the magnetic flux through the surface defined by $z=1,0 \leq x \leq 1,-1 \leq y \leq 4$.
[Q7] A bossy dielectric has an intrinsic impedance of $200 L 30^{\circ} \Omega$ at a particular frequency. If, at that frequency, the plane wave propagating through the dielectric has the magnetic field component $H=10 e^{-\alpha x} \cos \left(\omega t-\frac{1}{2} x\right) \mathrm{a}_{\mathrm{y}} \mathrm{A} / \mathrm{m}$, find \mathbf{E} and α.
[Q8] In free space, $H=0.2 \cos (\omega t-\beta x) a_{z} \mathrm{~A} / \mathrm{m}$. Find the total power passing through a circular disc of radius 5 cm on plane $x=1$
[Q9] A lossless transmission line with a characteristic impedance of 75Ω is terminated by a load of 120Ω. The length of the line is 1.25λ. If the line is energized by a source of 100 V (rms) with an internal impedance of 50Ω, determine the input impedance, and the magnitude of the load voltage.
[Q10] A 75Ω lossless line is to be matched to a $100-\mathrm{j} 80 \Omega$ load with a shorted stub. Calculate the stub length, its distance from the load, and the necessary stub admittance.

