Dr. Subit Kuman Jeuiy =

National Institute of Technology Hamirpur Department of Mathematics & Scientific Computing M.Sc.(Mathematics & Computing), Semester-III MA 632: Numerical Analysis End-Term Examination, November-December 2022

Time: 3:00 hrs

Max. Mark: 50

Note: All questions are compulsory.

1. (i) For the given Maclaurin series of e^x ,

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

If we want to compute $e^{0.01}$ with an error less than 10^{-12} , at least how many terms are needed?

(ii) Using the infinity-norm, calculate the condition number of the following matrix,

$\left[-3\right]$	0	0
0	4	0
0	0	2

(iii) Solve $(\frac{\Delta^2}{E})e^x \frac{Ee^x}{\Delta^2 e^x}$, where Δ and E represents forward difference operator and shift operator, respectively. And, the interval of differencing is h.

(iv) Determine the step size h that can be used in the tabulation of f(x) = sinx in the interval [1,3] so that the linear interpolation will be correct to four decimal places after rounding.

- 2. Determine the rate of convergence of the secant method. And also find a real root, correct to three significant figures, of the equation $x^3 2x 5 = 0$ in the interval [2, 3] using secant method. [6]
- 3. Using the Jacobi method, find all the eigenvalues and the corresponding eigenvectors of the matrix [6]

	[1	$\sqrt{2}$	2]
$\mathbf{A} =$	$\sqrt{2}$	3	$\sqrt{2}$
	2	$\sqrt{2}$	1

4. The integral

$$I = \int_0^3 \frac{dx}{x^2 + 2x + 10}$$

is split into two parts as

$$I = I_1 + I_2 = \int_0^2 \frac{dx}{x^2 + 2x + 10} + \int_2^3 \frac{dx}{x^2 + 2x + 10}$$

Apply two point Gaussian integration formula to each of I_1 and I_2 and hence find the value of I correct to atleast three decimal places.

5. Values of x (in degrees) and $\sin x$ are given in the following

x:	15	20	25	30	35	40
$\sin x$:	0.2588190	0.3220201	0.4226183	0.5	0.5735764	0.6427876

Determine the value of sin 38°, using appropriate Newton's method.

[4x2=8]

12/20

[6]

[6]

6. Given the following values of f(x) and f'(x)

x:	-1	0	1
f(x):	1	1	3
f'(x):	-5	1	7

estimate the values of f(-0.5) and f(0.5) using the Hermite interpolation.

7. Solve the initial value problem

$$u' = -2tu^2$$

with u(0) = 1 and h = 0.2 on the interval [0, 0.4]. Use the fourth order Runge-Kutta method. Consider seven digits for computation.

8. A boundary value problem (BVP) is defined by

$$\frac{d^2y}{dx^2} - y = 0$$

where y(0) = 0 and y(2) = 3.62686. With h = 0.5, use the finite difference method to solve the BVP. Also compute the absolute error at each nodal point. (Note: Use second order accurate central difference scheme to approximate the derivatives.)

* * * * * * * * * * * * * * * *

[6]

[6]

[6]