5

5

5

Roll No.:....

National Institute of Technology, Hamirpur (HP)

End Semester Examination(Nov/Dec-2022) [Class: M.Sc.(Mathematics & Computing) (3rd Semester)]

litle of the Course: Functional Analysis		Course Code: MA-631		
<i>Time: 03.</i> Note : At	<i>00 Hours</i> tempt all questions.		Maximum Marks: 50	
State the	following			5
i.	Hahn Banach Theorem	ii.	Open mapping Theorem	
iii.	Closed Graph Theorem	iv.	Uniform Bounded Principle	
v.	Banach Contraction Principle			
Define th	e following			5
i.	Normal Operator	ii.	Summability in Normed Linear Space	
iii.	Isometric Isomorphism	iv.	Hilbert Space	
v.	Orthogonal Compliment	vi.	Orthonormal Set	
vii.	Complete Orthonormal Set	viii.	Adjoint of an operator	
ix.	Self-Adjoint operator	х.	Continuous Linear Transformation	

- 3. Let *H* be a Hilbert space and *T* be a positive operator on *H* then, I + T is non-singular.
- 4. If P is a projection on a Hilbert space H with range M and null space N, then $M \perp N$ if and only if P is 5 self-adjoint and in this case $N = M^{\perp}$
- 5. Let T be an operator on a Hilbert space H. Then, there exists a unique operator on T^* on H such that 5 $(Tx, y) = (x, T^*y) \forall x, y \in H$
- 6. (i) If T is a normal operator on a Hilbert space H, then the eigenspaces of T are pairwise orthogonal.
 5 (ii) Let X be a normed space then

(a) addition and scalar multiplication are jointly continuous in X and

1.

2.

(b) If x_n converges to x and y_n converges to y then ax_n+by_n converges to ax+by, where a, b are constants.

7. Let $\{e_i\}$ be an orthonormal set in Hilbert space H and if x is an arbitrary vector in H, then

$$(x - \sum (x, e_i)e_i) \perp e_i$$
 for each j

8. Let N be a normed linear space and suppose two norms $\|.\|_1$ and $\|.\|_2$ are defined on N. Then these 5 norms are equivalent if and only if there exists positive real numbers m and M such that

$$m\|x\|_1 \le \|x\|_2 \le M\|x\|_1$$

- 9. Let N be a non-zero normed linear space and let $S = \{x \in N : ||x|| \le 1\}$ be a linear subspace of N. 5 Then N is a banach space if and only if S is complete.
- 10 A normed linear space N is a Banach space iff every absolutely summable series in N is summable.