Dr Swierebs Kem Drustore 2/12/202

National Institute of Technology Hamirpur, HP MA-312: Number Theory and Abstract Algebra B.Tech 5th Semester (Mathematics and Computing) End Semester Examinations (Odd) Academic Session : 2022 - 2023

Max. Mark: 50

Time: 3 hrs	against it.
Note: All questions are compulsory. The marks allotted to a question are indicated to Symbols have their usual meaning.	~
-1 . (i) State the Wilson theorem. Use Wilson theorem to obtain the remainder $27! \times 30 + 2$ is divided by 29.	when [2]
(ii) Prove or disprove that in a commutative ring with identity, every prin maximal.	[2]
(iii) (a) Find $\phi(2002)$, where ϕ is the Euler's phi function.	[1]
(iii) (ii) Find the number of subgroups of \mathbb{Z}_{3003} .	[1]
(i) Prove or disprove that subring of an Euclidean domain is an Euclidean I	Domain. [2]
(iv) Write a field of order $\frac{1}{4}$.	[2]
(v) Write a field of state \mathbb{Z}_{31} is an Integral Domain.	[2]
(vii) Determine the group of units of $\mathbb{Z}[i]$.	[2]
(a) Determine an integer solution of $51X \equiv 12 \pmod{87}$.	[3]
 (b) State the Euler's theorem for congruences. Use Euler's theorem to de last two digits in the decimal representation of 3²⁵⁶. 	termine the [3]
(c) Find a least positive integer solution of the system $X \equiv 2 \pmod{3}$, $X \equiv X \equiv 3 \pmod{7}$, by using Chinese remainder theorem.	$\equiv 1 \pmod{5},$ [4]
3. (a) Define the divisor function τ . Show that divisor function is multiplicat	ive. [3]
(b) Define a finite continued fraction. Write $\frac{19}{51}$ in the form of a continued	fraction. [3]
4. (a) Let p be a prime. Define a Sylow p -subgroup of a finite group G . I Sylow 2-subgroups of S_4 .	Determine all [4].
(b) Write all the normal subgroups of S_3 .	[2]
5. (a) Define a Principal Ideal Domain (PID). Show that any field F is a PI	D. [3]
(b) Define a prime element in an integral domain. Prove or disprove that in $\mathbb{Z}[\sqrt{-5}]$.	2 is a prime [4]
6. (a) Define an splitting field of a polynomial over a field F . Determine the of $x^3 - 2$.	splitting field [3]
(b) Define a Galois extension of a field F . Show that $\mathbb{Q}(\sqrt{2})$ is the Galoi \mathbb{Q} .	s extension of [4]

* * * * * * * * * All the best * * * * * * * * * *