MA-205 29/11/2022 Dr Meha Jadav

National Institute of Technology, Hamirpur (H.P.)

End-Semester Examination – (November-December 2022) Title of the Course: <Engineering Mathematics-III> Class: B.Tech (CSE &CSE DD, Civil, Electrical, M&SC)

Course Code: MA-203 Duration: 3:00 hrs Semester: 3rd Max. Marks: 50

Instructions:

- All Questions are compulsory.
- > Marks are given against each question.

Q1. (a) Find the general and principal values of $(1 + i\sqrt{3})^{1+i}$.

(b) Show that the function $u = \frac{1}{2}\log(x^2 + y^2)$ is harmonic.

(c) Evaluate $\sqrt{12}$ correct to four decimal places using Newton Raphson method.

(d) Evaluate $\Delta^n e^{ax+b}$; where the interval of differencing taken to be unity.

[4×02 Marks = 08 Marks]

Q2. Represent the function $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent's series valid for following domains (a) 1 < |z| < 3 (b) 0 < |z+1| < 2. [03+03=06 Marks]

Q3. Use Cauchy Residue theorem to evaluate the integral = $\oint_C \frac{e^z - 1}{z (z-1)(z-i)^2} dz$, where C: |z| = 2. [06 Marks]

Q4. Find the best-fit values of a and b using least square method to fit an approximation of the form $y = a + bx + cx^2$ for the data given in following table

x	0	1	2	3	4	
У	-4	-1	4	11	20	

[06 Marks]

Q5. Determine the percentage number of criminals under 35 years for the following data using Lagrange's interpolation formula. Use 3 decimal places for computation.

Age	Under 25 years	Under 30 years	Under 40 years	Under 50 years	
1.6.		67.3	84.1	94.4	
% no. of criminals	52			106 Marks	

Q6. Evaluate $\int_0^1 \frac{1}{1+x^3} dx$, with number of grid points 3, 5 and 9 using Trapezoidal rule and Compute the extrapolated value using Romberg Integration method with Trapezoidal rule. Use 4 decimal places for computation.

[06 Marks]

Q7. Apply Runge Kutta Method to solve $\frac{dy}{dx} = xy^{1/3}$, y(1) = 1 to obtain y(1.1), where h = 0.1. Use 4 decimal places for computation. [06 Marks]

Q8. Given $\frac{dy}{dx} = \frac{1}{2}(x+y)$ and y(0) = 2, $x \in [0,2]$. Take step length h = 0.5 and Milne's predictor-corrector formula to evaluate y(2.0) correct to three decimal places. Given y(0.5) =2.6336, y(1.0) = 3.595, and y(1.5) = 4.968.

[06 Marks]

***********ALL THE BEST*******